2010 Site Installation and Calibration Report Whiteface Mountain Summit, NY Cloud-water Monitoring Site Installation and Calibration Report

Prepared for:

New York State Department of Environmental Conservation

Prepared by:

1128 NW 39th Drive Gainesville, FL 32605

May 2010

Table of Contents

1.0 Site Activities	1
2.0 Modifications and Repairs	1
3.0 Calibration Summary	5
4.0 Results and Recommendations	6

List of Appendices

Appendix 1	Calibration Results
Appendix 2	Transfer Instrument Certifications

List of Tables

Table 1.	Recorded Parameters	2
Table 2.	Digital Triggered Event Programs	4
Table 3.	Alarm Programs	4

List of Acronyms and Abbreviations

ALSC	Adirondack Lake Survey Corporation
DAS	data acquisition system
DEC	Department of Environmental Conservation
EEMS	Environmental, Engineering & Measurement Services, Inc.
m/s	meters per second

1.0 Site Activities

Environmental, Engineering & Measurement Services, Inc. (EEMS) performed site activities on May 27th and 28th, 2010 at the New York State Department of Environmental Conservation (DEC) cloud-water monitoring site, at the Whiteface Mountain Summit Station operated by Adirondack Lake Survey Corporation (ALSC) personnel. The activities for the beginning of the season included the installation and calibration of the site instrumentation and equipment functionality tests.

The permanent junction box again proved to be helpful during the site activation this season. The sensors and collector were mounted on the roof of the station and signals were connected to the data logger via the junction box and signal cable. Air lines were connected from the junction box to the collector lift cylinder and the deionized water wash tank.

2.0 Modifications and Repairs

Rain Sensor

The new rain sensor procured last season was installed. It was initially installed directly to the DAS panel in the instrument rack in order to test and adjust the sensor interface circuit. Following the repair of a loose connection on the sensor input circuit on the rear of the DAS, the rain sensor and other system inputs were functioning properly.

Wind Direction and Wind Speed

The wind direction sensor interface circuit which had been installed in the sensor for last season's operation was removed. The wind direction sensor was returned to the normal wiring and operation using the new Met-Card which had been installed in the DAS during the site deactivation in the fall of 2009.

The replacement bearings were installed in the wind sensor and the starting threshold was tested. The starting threshold of the new bearings was higher than the old bearings. The old bearings were reinstalled and tested. The wind speed starting threshold was 0.5 g-cm with the old bearings and within acceptable limits.

Solar Radiation

The solar radiation sensor interface circuit was removed from the DAS panel in the instrument rack and relocated to the roof of the structure. By making this installation modification the solar

radiation signal is converted from a current signal to a voltage signal prior to routing to the DAS. This change seemed to improve the signal stability and reduce the noise which was previously present. Due to the other repairs undertaken during the site installation, time did not permit the comparison of the signal with the transfer standard, however the system was calibrated at a different location prior to being provided to NY DEC and the output seemed reasonable.

Float Switch

The replacement float switch used to indicate when the sample accumulator is full did not work properly last season. The switch was tested and found to be a normally "open" switch which is opposite from the switch that failed and was removed. The DAS logic was changed to accommodate the operation of the new switch.

DAS Parameters

There were a few changes to the data logger configuration for this season. The wind direction and wind speed signals were moved back to the Met-Card. The solar radiation full-scale was adjusted to the proper level of 1396 w/m^2 per volt. The float switch logic was corrected, and the unused sample bottle turntable control functions were removed.

The current DAS inputs, alarms, and control configurations are reflected in Tables 1, 2, and 3 below.

Parameter	Description	Units
TEMP	temperature	°C
LWC-1	liquid water content	g/m ³
PSA-1	cloud particle size	cm^2/m^3
SR	solar radiation	w/m ²
R-SENSOR	rain sensor	Yes/no
RAIN-HR	calculated, number of minutes of rain per hour	min
CLOUD	triggered by WSP, TEMP, LWC-1, R-SENSOR, and FULL to indicate cloud event	Yes/no
DEPLOY	rolling average (currently 2 min) of CLOUD to deploy collector	Yes/no
CONFIRM	status input from collector in up position	Yes/no

Table 1.	Recorded	Parameters

Parameter	Description	Units
CLOUD-HR	calculated, number of minutes sampler deployed per hour	min
FULL	float switch input, minutes accumulator was full per hour	Min-left
TB-RAIN	tipping bucket rain gauge	inches
WSP	scalar wind speed	m/s
V-WSP	vector averaged wind speed	m/s
V-WDR	vector averaged wind direction	degrees
SIG-T	calculated, Sigma Theta (wind direction variation)	degrees
LWC-2	liquid water content – second Gerber	g/m ³
PSA-2	cloud particle size – second Gerber	cm^2/m^3
TEMP	temperature	°C
LWC-1	liquid water content	g/m ³
PSA-1	cloud particle size	cm^2/m^3
SR	solar radiation	w/m ²
R-SENSOR	rain sensor	Yes/no
RAIN-HR	calculated, number of minutes of rain per hour	min

With the exception of the SIG-T parameter, one minute and hourly averaged data for all input parameters are stored by the DAS. This year the storage space allotted for minute-average data continues to be four days of stored data. As in previous years, hourly data are stored for nine days on the DAS.

Polling of the DAS is required at least every four days to download site data and populate the database maintained by the DEC. The DAS can also be polled locally by the site computer running the ESC polling software. Polling one minute averaged data will permit more discrete correlation of sample chemistry with sample collection properties and aid in the data validation process.

The SIG-T parameter calculates hourly averages of the variation in vector wind direction (Sigma Theta) using 15 minute averages as input values. The calculation equation can be found in the ESC data logger manual.

The RAIN-HR and CLOUD-HR parameters are summations of the minutes from the R-SENSOR and CONFIRM parameters for each hour, or the total time of rain and cloud sampling per hour.

The SAMPLE parameter monitors the CLOUD-HR parameter each hour and assigns either a "0" if there are no minutes of sampling, or a "1" if any sampling occurred.

Control Functions

Alarm programs monitor individual or multiple input parameters for assigned data values. When the data value for the designated average period of the monitored parameter(s) match the assigned level within each program, the control output switching occurs. Multiple "high" and "low" alarm levels and multiple switches can be used to allow complex control. Table 2 summarizes the Digital Triggered Event Programs and Table 3 summarizes the Alarm Programs.

Program	Description
CLOUD	monitors WSP, TEMP, LWC-1, R-SENSOR, and FULL alarm status to send signal to CLOUD parameter
FILL	opens the valve to drain the accumulator into the sample bottle if a sample was collected
RAIN	monitors the R-SENSOR status and switches sample line to waste, turns on rain sensor heater, and signals CLOUD parameter if rain event

Table 2. Digital Triggered Event Programs

Table 3.Alarm Programs

Program	Description				
RAIN	monitors R-SENSOR parameter for low value to signal the CLOUD event status				
DEPLOY	monitors DEPLOY parameter for a high value				
SAMPLE	monitors CLOUD-HR parameter for a high value				
COLLECT	monitors CONFIRM parameter for a high value to switch from waste to accumulator after the sample line is conditioned				
DELAY-S	monitors CONFIRM parameter for a high value to condition the line and allow rinse water to go to waste, before switching to accumulator				

Program	Description					
SPRAY	monitors CONFIRM parameter for a low value to wash the collector after it lowers					
FULL	monitors FULL parameter for a high value to switch the sample line to waste and signal the CLOUD event status					
TEMP	monitors the TEMP parameter for a high value (currently 1 °C) to signal the CLOUD event status					
LWC	monitors the LWC-1 parameter for a high value (currently 0.05 g/m^3) to signal the CLOUD event status					
WSP	monitors the WSP parameter for a high value (currently 2.5 m/s) to signal the CLOUD event status					

The program is designed to match the operation of the old system as closely as possible, however all recorded parameters, triggered events, and alarm programs can be modified to achieve more efficient, or other goals if desired. Alarm levels can be changed to collect more discrete samples differentiated by wind direction, temperature, LWC, or other parameters. Collection time can be altered to automatically discard samples collected during short events with low LWC. The flexibility of the system and availability of the expanded database will allow more comprehensive use of the data by various researchers.

3.0 Calibration Summary

Since the site was not operational upon arrival, all calibration results are submitted as adjusted (or as-left) results. Adjustments were made to the sensor interfaces as necessary, which corrected the signal outputs with comparison to the transfer standards. The differences between the site response and the transfer response are presented with the calibration results in Appendix 1. These are within normal acceptable ranges for the operation of this type of equipment.

Certification results of the transfer instruments used during the site activities are included in Appendix 2. These are provided as a means to trace the site calibration results to a higher standard.

4.0 Results and Recommendations

At the conclusion of the site activities on May 28, 2010, all of the cloud monitoring and support instrumentation was calibrated, tested, and functioning properly to the satisfaction of EEMS and ALSC personnel. The operational tests included the review of the various meteorological sensor outputs for reasonable values. Several tests of the up/down motion of the cloud collector and corresponding response when simulating a rain event and a full accumulator event were conducted.

It is suggested that the wind sensor be refurbished after this season. This should include a new potentiometer and both wind speed and wind direction bearings. EEMS will perform this service in order to ensure that replacement sensor bearings are within acceptable limits prior to site installation for next season.

EEMS is available to assist ALSC personnel via telephone and e-mail during the 2010 sampling season to evaluate and troubleshoot the system. EEMS personnel will also be available at the end of the sampling season to perform an instrument calibration check to document that the operation of the equipment remained within specifications. EEMS is pleased to provide any assistance that the DEC might have with regards to the recommended repairs and the continued or improved operation of the cloud-water monitoring site at Whiteface Mountain Summit.

Appendix 1

Calibration Results

Г	Tempe	erature	e Audit	t Inforr	natio	n	7
Site: Whiteface Mountain Summit, NY Date: 5/27/2010							
	site system			1	transfe	er syster	n
sensor manufa sensor s/n	acturer	RM Young 13707		RTD manuf RTD s/n	acturer	eems#	Eutechnic 01230
DAS s/n		4876		transfer slo transfer inte transfer cor certification	pe ercept relation co date	peficient	0.99928 0.03889 1.00000 1/5/2010
RTD deg C	RTD corrected deg C	S	site respons (from DAS) volts dc	e s	ite respon (from DAS deg C	ise S)	difference deg C
0.14 17.44 39.80 26.70	0.10 17.41 39.79 26.68		0.4987 0.6715 0.8957 0.7641		-0.13 17.15 39.57 26.41		-0.23 -0.26 -0.22 -0.27
average	20.9963				20.75		-0.25

	\ \	Vind S	ystem	n Audi	t Info	rmati	on		1
Site: Wh	iteface M	lountain S	ummit, N	NY		Date:	5/27	/2010	
	site s	ystem				tran	sfer	system	<u>ו</u>
sensor ma sensor s/n model prop s/n prop corree NYS #	nufacturer ction factor	F 2 F 7 (₹M Young I9822 ₹E 77056).0051 138498		motor mfg model motor s/n EEMS # certificatio	g: , on date:			RM Young 18802 CA02777 01262 1/13/2010
DAS s/n prop torque vane torqu	e ie	0.5 12	l876 g-cm g-cm		tranist # 7 certificatio MD -14.5	192034 on date: 5	S	R pipe =	1/15/2010 173
			w	ind direc	tion				
	direction degrees	sit (†	e response from DAS)	e s	site respor (from DAS	nse S)	С	lifference degrees	
	° True		volts dc		degrees	;			absolute
crossarm	263				261			-2	2
crossarm	83				88			5	5
	360 90 180 270				360 88 179 270			0 -2 -1 0	0 2 1 0
	average								1.7
				wind spe	ed				
input rpm		equivalent m/s	S	ite respons volts	е	site respo m/s	onse	%diff	difference m/s
0 200 400 800		< 0.2 1.02 2.05 4 10		0.0068 0.0247 0.0456 0.0855		0. 1. 2. 4	10 10 10 09		N/A 0.074 0.048 -0.004
1800 3800 8800		9.22 19.46 45.06		0.1828 0.3785 0.8673		9. 19. 44.	08 06 01	-1.5% -2.0% -2.3%	-0.13 -0.40 -1.05
	average								-0.24

	bing Bucket	Audit Informa		
Site: Whiteface Mour	itain Summit, NY	Date:	5/2//2010	
site syste	em	tran	sfer system	
DAS manufacturer	ESC	manufacturer		PMP
DAS model	8816	model	EV	V-06134-50
DAS s/n	4876		calibra	ated 250 ml
gauge manufacturer	Texas Elec 36011-505	EEMS #		01250
input	input	DAS response	difference	
ml	inches	inches	inches	%
231.5	0.50	0.48	-0.02	-4.0%
231.5	0.50	0.49	-0.01	-2.0%
	average	error	-0.02	
	average %	difference	-3.0%	

Appendix 2

Transfer Instrument Certifications

FLUKE ® Everett Service Center

1420 75th St. SW Everett, Washington 98203 USA

Calibration Certificate

NQA ISO 9000:2000 (10100/2)

EOH EEMS # 01310

Description:	TRUE RMS MULTIMETER	Certificate Number:	1567749-86590148-1262607160
Manufacturer:	FLUKE	Date of Calibration:	04 January 2010
Model:	187	Date of Certificate:	04 January 2010
Serial Number:	86590148	Date Due:	04 January 2011
Customer Name:		Procedure Name:	tute of Standards and Technology
EEMS		FLUKE 187: (1 YEAR) Z	CAL VER RS-232 /5520
City, State:	GAINESVILLE, FL	Procedure Revision:	2.0
Customer Item ID:	86590148	Data Type:	FOUND-LEFT
PO Number:	CCS CHARLES K HALBROOK	Temperature:	22.08 °Celsius
RMA Number:	4371587	Relative Humidity:	30 %
Result Summary:	PASS	,	

The Data type that could be found in this certificate must be interpreted as:

As-Found - Calibration data collected before the unit is adjusted and/or repaired.

As-Left - Calibration data collected after the unit is adjusted and/or repaired.

· Found-Left - Calibration data collected without any adjustment and/or repair performed.

This certificate applies only to the item identified and shall not be reproduced other than in full, without the specific written approval by Fluke Corporation. The user is obliged to have the object recalibrated at appropriate intervals.

Comments:

Long Le

Metrology Technician

Fluke Corporation	Telephone	Facsimile	Internet	Page 1 of 2
1420 75th Street SW, Everett WA 98203 USA	888.993.5853	425.446.6390	www.fluke.com	Rev 6.6, 6/29/09

Certificate Number: 1567749-86590148:1262607160

Traceability Information

For each parameter listed below the calibration was conducted using an unbroken chain of standards to:

DC Voltage

The Voltage Reference standard group, traceable to the Fluke Primary Standards Laboratory, which is traceable to the U.S. representation of the volt, through the internationally accepted value of the Josephson constant Kj=483597.9 GHz/V and a 10 Volt Josephson Array Voltage Standard.

Frequency and Period

The GPS-Rubidium Disciplined oscillator frequency standard, traceable to the United States Naval Observatory (USNO), which is traceable to the National Institute of Standards and Technology.

AC Voltage, Resistance, DC Current, AC Current, Capacitance, Inductance, Phase The Fluke Primary Standards Laboratory, which is traceable to the National Institute of Standards and Technology.

AC Voltage Flatness

The Fluke Primary Standards Laboratory, or Agilent Technologies Standards Laboratory which are traceable to the National Institute of Standards and Technology.

Humidity

The Vaisala Measurement Standards Laboratory Primary Salt calibration bath, with traceability based on the physical phenomena in which the equilibrium relative humidity values associated with certain saturated salt solutions are known.

Rise Time

The Tektronix GmbH Calibration Laboratory which is traceable to the Physikalisch-Tecnische Bundensanstalt.

Radiation Temperature

The National Institute of Standards and Technology, the Physikalisch-Tecnische Bundensanstalt, or Hart Scientific.

Contact Temperature

The Fluke Primary Standards Laboratory, Hart Scientific, which are traceable to the National Institute of Standards and Technology.

Gas Flow

The DHI Calibration Laboratory, which is traceable to the National Institute of Standards and Technology.

Pressure

The DHI Calibration Laboratory, which is traceable to the Laboratorire National D'Essais, Physikalisch-Technische Bundesanstalt and National Institute of Standards and Technology, or traceable to the Mensor or Ashcroft Calibration Laboratories, which are traceable to the National Institute of Standards and Technology.

	Standards U	Jsed	
Asset # 10127	Instrument Model FLUKE 5520A CALIBRATOR	Cal Date 29 May 2009	Cal Due 28 February 2010
	an lot of a first		

End of Report

Fluke Corporation	Telephone	Facsimile	Internet	Page 2 of 2
1420 75th Street SW. Everett WA 98203 USA	888,993,5853	425.446.6390	www.fluke.com	Rev 6.6, 6/29/09

Page 1 of

Certificate of Calibration

Customer: EE & MS 1950 NW 39TH PLACE GAINESVILLE, FL 32605 352-317-2463 P.O. Number: HOLD

ID Number: 01230

Description: Manufacturer: Model Number:	TEMPERATURE INDICATOR EUTECHNICS 4600-1.2.5	Calibration Date: Calibration Due: Procedure:	1/5/2010 1/5/2011 TMI-M-THERMOMETER Rev: 2/1/2005
Serial Number:	01D102193	Temperature:	70 °F
Technician:	BRANDON BLACK	Humidity: As Found Condition:	50 % RH IN-TOLERANCE
On-Site Calibratio	n: 🔲	Calibration Results:	PASS
Comments:			

This instrument has been calibrated using standards traceable to the National Institute of Standards and Technology, derived from natural physical constants, ratio measurements or compared to consensus standards. Unless otherwise noted, the method of calibration is direct comparison to a known standard.

Reported uncertainties and "test uncertainty ratios" (TUR's) are expressed as expanded uncertainty values at approximately 95% confidence level using a coverage factor of K-2. A TUR of 4:1 is routinely observed between the accuracy of the reference standard and the tolerance of the UUT unless otherwise noted on the certificate. Statements of compliance are based on test results falling within specified limits with no reduction by the uncertainty of the measurement.

TMI's Quality System complies with the requirements of ISO 9001, ANSI/NCSL Z540-1, ISO 10012 and MIL STD 45662A.

Results contained in this document relate only to the item calibrated. Calibration due dates appearing on the certificate or label are determined by the client for administrative purposes and do not imply continued conformance to specifications.

This certificate shall not be reproduced, except in full, without the written permission of Technical Maintenance, Inc.

Centheylly

Anthony Rogers, Branch Manager

Calibration Standards

Jack Shule

Jack Shuler, Quality Manager

Asset Number 30946	Manufacturer FLUKE	Model Number 5616	Serial Number 30946	<u>Cal Due</u> 11/30/2010
A06118	HART SCIENTIFIC	9103	A06118	2/10/2011
A88072	FLUKE	1502A	A88072	10/11/2010

Technical Maintenance, Inc.

12530 Telecom Drive, Temple Terrace, FL 33637 (813) 978-3054 Fax: (813) 978-3758 www.tmicalibration.com ISO 9001:2000 ANSI/NCSL Z540-1-1994

Eutechnics 4600 Digital Thermometer/Probe

INSTRUMENT DATA SHEET

Asset Number: _ Date Tested: _	01230 5 Jan 20))10	Customer:		EE & MS		-
Parameter Tested	Nominal Value	Tolerance	Lower <u>Limit</u>	Upper <u>Limit</u>	As Found	Pass/Fail	As Left
Temperature Accuracy	e chete						
Deg. C	-0.021 9.964 19.936 29.951 39.970 49.935	+/13 +/13 +/13 +/13 +/13	-0.151 9.834 19.806 29.821 39.840 49.805	0.109 10.094 20.066 30.081 40.100 50.065	0.000 10.000 19.970 29.990 39.980 49.920	PASS PASS PASS PASS PASS PASS	AS FOUND AS FOUND AS FOUND AS FOUND AS FOUND AS FOUND

Eutechnics 4600 Rev.0 Date: May 2000

Certificate Number A666631

Customer:

Page Tof

EE & MS 1950 NW 39TH PLACE GAINESVILLE, FL 32605 352-317-2463

P.O. Number: HOLD

ID Number: 01231

Description:	TEMPERATURE PROBE	Calibration Date:	1/5/2010
Manufacturer:	UNKNOWN	Calibration Due:	1/5/2011
Model Number:	SP034-39	Procedure:	TMI-M-THERMOMETER Rev: 2/1/2005
Serial Number:	01H0060	Temperature:	70 °F
Technician:	BRANDON	Humidity:	50 % RH
roominioidin.	BLACK	As Found Condition:	IN-TOLERANCE
On-Site Calibration	n: 🔲	Calibration Results:	PASS
Comments:			

This instrument has been calibrated using standards traceable to the National Institute of Standards and Technology, derived from natural physical constants, ratio measurements or compared to consensus standards. Unless otherwise noted, the method of calibration is direct comparison to a known standard.

Reported uncertainties and "test uncertainty ratios" (TUR's) are expressed as expanded uncertainty values at approximately 95% confidence level using a coverage factor of K-2. A TUR of 4:1 is routinely observed between the accuracy of the reference standard and the tolerance of the UUT unless otherwise noted on the certificate. Statements of compliance are based on test results falling within specified limits with no reduction by the uncertainty of the measurement.

TMI's Quality System complies with the requirements of ISO 9001, ANSI/NCSL Z540-1, ISO 10012 and MIL STD 45662A.

Calibration Standards

Results contained in this document relate only to the item calibrated. Calibration due dates appearing on the certificate or label are determined by the client for administrative purposes and do not imply continued conformance to specifications.

This certificate shall not be reproduced, except in full, without the written permission of Technical Maintenance, Inc.

Conthey Ray

Anthony Rogers, Branch Manager

Jack Shulu Jack Shuler, Quality Manager

Asset Number Manufacturer Model Number Serial Number Cal Due 30946 FLUKE 5616 30946 11/30/2010 A06118 HART SCIENTIFIC 9103 A06118 2/10/2011 A88072 FLUKE 1502A A88072 10/11/2010

ISO 9001:2000 ANSI/NCSL Z540-1-1994

12530 Telecom Drive, Temple Terrace, FL 33637 (813) 978-3054 Fax: (813) 978-3758 www.tmicalibration.com

Technical Maintenance, Inc.

Eutechnics 4600 Digital Thermometer/Probe

INSTRUMENT DATA SHEET

Asset Number: _ Date Tested: _	0123 ⁻ 5 Jan 20	1)10	Customer: _		EE & MS		-
Parameter Tested	Nominal Value	Tolerance	Lower <u>Limit</u>	Upper <u>Limit</u>	As Found	Pass/Fail	<u>As Left</u>
Temperature Accuracy							
Deg. C	-0.021	+/13	-0.151	0.109	0.000	PASS	AS FOUND
Ŭ	9.964	+/13	9.834	10.094	10.000	PASS	AS FOUND
	19.936	+/13	19.806	20.066	19.970	PASS	AS FOUND
	29.951	+/13	29.821	30.081	29.990	PASS	AS FOUND
	39.970	+/13	39.840	40.100	39.980	PASS	AS FOUND
	49.935	+/13	49.805	50.065	49.920	PASS	AS FOUND

Eutechnics 4600 Rev.0 Date: May 2000

	TMI	EEMS		EE	MS	EEMS	EEMS	EEMS
	STD	RTD		R	TD	SEG	SD	EOH
cert date=	1/5/2010	01230 / 01231		01230	/ 01231	01237	01236	01310
				raw	corrected			
	-0.021	0		0.08	0.04	0.4	0.3	0.2
	9.964	10		48.11	48.11	48.5	48.3	48.5
	19.936	19.97		0.09	0.05	0.4	0.3	0.3
	29.951	29.99		35.78	35.77	36.1	36.1	36.1
	39.97	39.98		30.08	30.06	30.5	30.3	30.3
	49.935	49.92		19.7	19.66	20.1	19.9	19.9
				10.06	10.02	10.4	10.1	10.1
		slope=	0.999277					
		intercept=	0.038887	Therr	mocouple offset	-0.6	-0.3	N/A
					slope =	1.000614	1.000615	1.004334
					intercept	= 0.371651	0.214493	0.152425
					correlation	n = 0.999998	0.999991	0.999993

CALIBRATION PROCEDURE 18802/18811 ANEMOMETER DRIVE

18802 / 7 18811

 DWG: CP18802(C)

 REV: C101107
 PAGE: 4 of 4

 BY: TJT
 DATE: 10/11/07

 CHK: JC
 W.C. GAS-12

CERTIFICATE OF CALIBRATION AND TESTING

R. M. Young Company certifies that the equipment listed below was inspected and calibrated prior to shipment in accordance with established manufacturing and testing procedures. Standards established by R.M. Young Company for calibrating the measuring and test equipment used in controlling product quality are traceable to the National Institute of Standards and Technology.

MODEL:

SERIAL NUMBER: CA02777

(18802 Comprised of Models 18820A Control Unit & 18830A Motor Assembly) (18811 Comprised of Models 18820A Control Unit & 18831A Motor Assembly)

Nominal Motor RPM	27106D Output Frequency (Hz) - (1)	Calculated Rpm (1)	Indicated Rpm (2)		
1	18802 - 🗹 C				
300	50	300	300		
2700	450	2700	2700		
5100	850	5100	5100		
7500	1250	7500	7500		
10,200	1700	10200	10200		
12,600	2100	12600	12600		
15,000	2500	15000	15000		
1	8811 -	DCW/	CCW rotation verified		
30.0	5	30.0	30.0		
150.0	25	150.0	150.0		
300.0	50	300.0	300.0		
450.0	75	450.0	450.0		
600.0	100	(000.0	600.0		
750.0	125	750.0	750.0		
990.0	165	990.0	990.0		

 Measured frequency output of RM Young Model 27106D standard anemometer attached to motor shaft - 27106D produces 10 pulses per revolution of the anemometer shaft.
 Indicated on the Control Unit LCD display.

Indicates out of tolerance

No Calibration Adjustments Required

As Found

As Left

Traceable frequency meter used in calibration Model: DP5740 SN: 4863

Date of inspection Inspection Interval

One Yea

Tested By

Warren-Knight Instrument Company 2045 Bennett Road Philadelphia, PA 19116 Phone: 215-464-9300; Fax: 215-464-9303 Web: http://www.warrenind.com

CERTIFICATION OF CALIBRATION AND CONFORMANCE

We hereby certify that the equipment below has been manufactured and/or inspected by standards traceable to NIST. Calibration of the specified instrument has been performed in compliance with ANSI Z540-1 requirements. It is warranted that the equipment has been calibrated to be in full conformance with the drawings and specifications of the instrument. Calibration tests were performed on the material specified below and were in accordance with all applicable quality assurance requirements with data on file at our facility.

		1		
Customer Name:	EE & MS	#	01270	(EOH)
Purchase Order #:				
Instrument:	S25 Compass			
Serial Number:	192034			
Quantity:	1			
Calibration Due:	1/2011			

John Noga, Quality Control

January 15, 2010

Measurement Standards:

 Theodolite:
 Wild T-3 S/N 18801/CAL 5/14/97 NIST# 738/229329-83 738/223398

 Optical Wedge:
 K&E 71-7020 S/N 5167/CAL 4/19/01 NIST# 731/244084-89